Cu^{2+} , or O₂, then the chain is suppressed to the extent that the electrophilic pathway emerges, which was the method by which k_{14} was evaluated.

Acknowledgment. This research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Chemical Sciences Division, under Contract W-7405-Eng-82 and Argonne National Laboratory. We also acknowledge support from the U.S.-Israel Binational Science Foundation.

4-CH₃C₆H₄CH₂CrL(H₂O)²⁺, 129834-70-4; 4-Registry No. BrC₆H₄CH₂CrL(H₂O)²⁺, 125329-98-8; (CH₃)₂CHCrL(H₂O)²⁺, 70833-00-0; C₂H₃CH₂CrL(H₂O)²⁺, 70832-98-3; Br⁻⁻, 12595-70-9; (SCN)₂⁻⁻, 34504-17-1; 12**, 12190-71-5.

> Contribution from the Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523

Kinetic and Thermodynamic Acidity of Hydrido Transition-Metal Complexes. 9.1 A Sterically Hindered Cationic Hydride, [H₄Re(PMe₂Ph)₄]⁺

S. Sóley Kristjánsdóttir, Amy J. Loendorf, and Jack R. Norton*

Received May 29, 1991

Cationic polyhydride complexes $MH_{x}L_{y}^{+}$ can adopt either a classical structure with individual hydride ligands or a nonclassical one, $M(\eta^2-H_2)H_{x-2}L_y^+$, with two hydrogens coordinated as a dihydrogen molecule.² While there has been considerable interest^{3,4} in the relative acidity of dihydride cations and the corresponding η^2 -H₂ complexes, only one dihydrogen complex, $CpRu(dmpe)(\eta^2 - H_2)^+$, is has had its thermodynamic acidity measured in acetonitrile (the solvent we have found^{1a,b} best suited for determining the thermodynamic acidity of transition-metal hydrides); no classical polyhydride cation has been examined in that solvent.⁵ Furthermore, in no case has the *kinetic* acidity $(k_{H^+} \text{ in eq } 1)$ of a cationic polyhydride complex been measured

$$H-M + PhNH_2 \stackrel{k_{H^+}}{\longleftarrow} M^- + PhNH_3^+$$
(1)

in acetonitrile with aniline (the base we have used^{1a,b,6} to compare the kinetic acidity of an extensive series of transition-metal hydrides). Finally, neither the thermodynamic nor the kinetic acidity of a congested hydride has ever been examined in acetonitrile; our previous studies^{1,6} have involved relatively uncrowded complexes with carbonyl ligands.

- (1) (a) Part 6: Weberg, R. T.; Norton, J. R. J. Am. Chem. Soc. 1990, 112, 1105. (b) Part 7: Kristjånsdóttir, S. S.; Norton, J. R. In Transition Metal Hydrides: Recent Advances in Theory and Experiment; Dedieu, A., Ed.; VCH: New York, 1991; in press. (c) Part 8: Kristjánsdóttir, S. S.; Norton, J. R. J. Am. Chem. Soc. 1991, 113, 4366.
- Reviews of dihydrogen complexes: (a) Kubas, G. J. Acc. Chem. Res. 1988, 21, 120. (b) Kubas, G. J. Comments Inorg. Chem. 1988, 7, 17-40. (c) Crabtree, R. H.; Hamilton, D. G. Adv. Organomet. Chem. 1988, 28, 299. (3) Chinn, M. S.; Heinekey, D. M. J. Am. Chem. Soc. 1990, 112, 5166.
- (4) (a) Jia, G.; Morris, R. H. Inorg. Chem. 1990, 29, 582. (b) Jia, G.; Morris, R. H. J. Am. Chem. Soc. 1991, 113, 875.
 (5) The CH₃CN pK_a of CpRu(dmpe)(H)₂⁺ could be computed from the pK_a (17.6)³ of the corresponding dihydrogen complex and the equilib-tion of the corresponding dihydrogen complex and the equilibrium constant for interconversion of the two tautomers in CH₃CN, but the equilibrium constant is not reported in that solvent in ref 3. The lability of most dihydrogen complexes makes it difficult to determine their pK_a in a coordinating solvent,⁴ so the pK_a of 3 surely, and that of
- a tautomeric mixture like 2 probably, cannot be measured in CH₃CN.
 (6) Edidin, R. T.; Sullivan, J. M.; Norton, J. R. J. Am. Chem. Soc. 1987, 109, 3945. The line that expresses the relationship (over several hydrides in ref 1b as well as those in ref 6) between the deprotonation rate constant k and the thermodynamic driving force is $\log k = 5.3 + 0.60$ ($pK_a^{PNH}^{s^*} - pK_a^{MH}$).

Table I. Determination of the Acetonitrile pK_{a} of $[H_4Re(PMe_2Ph)_4][BF_4]$ (1)

4 (2) 431 43 ()				
base (B)	pK _a (BH ⁺)	Keq	p <i>K</i> _s (1)	
TMG	23.3ª	5.66×10^{-3}	25.5	
DBU	24.3 ^b	7.54×10^{-2}	25.4	
K[OC ₆ H ₅]	26.6 ^c	>0.4	<27	

^aReference 10a,b,e. ^bReference 11. ^cReference 10d,e.

We have therefore quantified the thermodynamic and kinetic acidity of $[H_4Re(PMe_2Ph)_4]^+$ (1)⁷ in acetonitrile solution. While the related rhenium hydride $[H_4Re(CO)(PMe_2Ph)_3]^+$ (2) exists in solution as a mixture of the classical tetrahydride and the nonclassical $(\eta^2 - H_2)$ dihydride tautomers⁸ and the iridium analogue $[H_4Ir(PMe_2Ph)_3]^+$ (3) is entirely nonclassical, with two dihydride ligands and a labile dihydrogen ligand,⁹ Caulton and co-workers have shown⁷ 1 to exist in solution as the classical tetrahydride isomer only. Furthermore, while 2 and 3 are deprotonated by triethylamine in CH₂Cl₂,^{8,9a} Caulton and co-workers have also found⁷ that 1 is not deprotonated by triethylamine in that solvent.

Experimental Section

All manipulations were carried out using Schlenk, high-vacuum, or inert-atmosphere-box techniques. CD₃CN was dried over P₂O₅ and degassed by repeated freeze/pump/thaw cycles. Aniline- d_2 was generated by shaking aniline with D₂O 10 times, followed by fractional distillation from BaO and vacuum transfer prior to use; deuterium incorporation was 95%. DNBu₂ was prepared in the same way and dried and stored over 3-Å molecular sieves. The neutral parent complex of 1, H₃Re(PMe₂Ph)₃ (4), was generously donated by Prof. K. G. Caulton, Indiana University, and converted to 1 by protonation with HBF4. OEt2.

CD₃CN solutions of 1 and various bases were sealed under vacuum and their ¹H NMR spectra recorded on either an IBM WP-200-SY or an IBM WP-270-SY spectrometer. Concentrations of all species involved were determined by integration of ¹H peaks relative to (Me₃Si)₂O as an internal standard. Since a very small amount of (Me₃Si)₂O was needed, it was quantified by gas volume measurements (typically 1.05 mL at 30 mmHg and 23 °C, or 1.89×10^{-6} mol).

Results and Discussion

Thermodynamic Acidity. The inability of Et₃N to deprotonate 1 in CH₂Cl₂ suggested that a stronger base than Et₃N would be required to do so in acetonitrile. Preliminary experiments in CD₃CN showed no deprotonation of 1 with 8 equiv of tetramethylguanidine (TMG), a base whose conjugate acid has a CH₃CN p K_a of 23.3^{10a,b,e} (the CH₃CN p K_a of Et₃NH⁺ is 18.5^{10c,e}). In contrast, potassium phenolate (the $CH_3CN pK_a$ of PhOH is 26.6^{10d,e}) completely deprotonated 1. The use of conditions more basic than 8 equiv of TMG but less basic than phenolate was thus indicated, and the required partial deprotonation of 1 was effected by 60 equiv of TMG or 5 equiv of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) (DBUH⁺ has a CH₃CN pK_a of 24.3¹¹).

The concentrations of 1 and its conjugate base 4 in the presence of each base B (eq 2) were determined by integration of the

- (a) Rhodes, L. F.; Caulton, K. G. J. Am. Commun. 1990, 189.
 (a) Rhodes, L. F.; Caulton, K. G. J. Am. Chem. Soc. 1985, 107, 259.
 (b) Lundquist, E. G.; Huffman, J. C.; Folting, K.; Caulton, K. G. Angew. Chem., Int. Ed. Engl. 1988, 27, 1165. (c) Marinelli, G.; Rachidi, I. E.-I.; Streib, W. E.; Eisenstein, O.; Caulton, K. G. J. Am. Chem. Soc. 1989, 111, 2346.
- (10) (a) Kolthoff, I. M.; Chantooni, M. K., Jr.; Bhowmik, S. J. Am. Chem. Soc. 1968, 90, 23–28. (b) Kolthoff, I. M.; Chantooni, M. K., Jr. J. Phys. Chem. 1968, 72, 2270. (c) Coetzee, J. R.; Padmanabhan, G. R. J. Am. Chem. Soc. 1965, 87, 5005. (d) Coetzee, J. R.; Padmanabhan, G. R. J. Phys. Chem. 1965, 69, 3193. (c) Euclides, J. K., Fadmander, Sociation Constants in Dipolar Aprotic Solvents; International Union of Pure and Applied Chemistry Chemical Data Series No. 35; Black-well: Boston, MA 1990; pp 17–35.
- (11) Schwesinger, R.; Schlemper, H. Angew. Chem., Int. Ed. Engl. 1987, 26, 1167. A CH₃CN pK_a of 23.9 has been reported for DBU: Leffek, K. T.; Pruszynski, P.; Thanapaalasingham, K. Can. J. Chem. 1989, 67, 590. However, we prefer the Schwesinger/Schlemper value because a value of K_f for B/BH⁺ association is available along with it.¹² The excellent agreement between the pK_a values for 1 obtained with TMG and with DBU reinforces our belief that the pK_a values we have used for these bases are accurate.

⁽⁷⁾ Lunder, D. M.; Green, M. A.; Streib, W. E.; Caulton, K. G. Inorg. Chem. 1989, 28, 4527. Luo, X.-L.; Crabtree, R. H. J. Chem. Soc., Chem. Commun. 1990, 189.

$$H_4 \operatorname{Re}(\operatorname{PMe}_2 \operatorname{Ph})_4^+ + B \xrightarrow{A_{\operatorname{eq}}} H_3 \operatorname{Re}(\operatorname{PMe}_2 \operatorname{Ph})_4 + BH^+ (2)$$

$$[\mathbf{B}\mathbf{H}^+]^2 + \left\{ [\mathbf{B}]_{tot} - 2[\mathbf{4}] + \frac{1}{K_f} \right\} [\mathbf{B}\mathbf{H}^+] - \frac{[\mathbf{4}]}{K_f} = 0 \quad (3)$$

$$pK_a^{MH} = pK_{eq} + pK_a^{BH^+}$$
(4)

hydride peaks in the ¹H NMR spectra. As both of these bases are known to associate with their conjugate acid BH⁺, eq 3^{1b} was used to calculate [BH⁺] from [4], the total amount of B added [B]_{tot}, and the B/BH⁺ association equilibrium constant K_f (1.3 M⁻¹ for TMG^{10b,e} and 32 M⁻¹ for DBU¹²). Charge balance was then used to calculate [BHB⁺] ([4] - [BH⁺]), and mass balance used to calculate $[B] ([B]_{tot} - 2[BHB^+] - [BH^+])$. The resulting values of K_{eo} (given in Table I) were substituted into eq 4^{1a,b} to give the acetonitrile pK_a of 1 as 25.5 (1).

It is instructive to compare 1 with 2, which, because it is deprotonated by Et₃N, must have a $pK_a < 18.5$; the neutral conjugate base of 1, $H_3Re(PMe_2Ph)_4$ (4), must be at least 7 orders of magnitude more basic than the neutral conjugate base of 2, $H_3Re(CO)(PMe_2Ph)_3$ (5). This increase with the substitution of PMe₂Ph for CO is about what we would expect from the effect of phosphine substitution on the pK_a of neutral carbonyl hydrides: PPh₃ substitution increases the pK_a of HMn(CO)₅ and HCo(CO)₄ by 6–7 units, and substitution by the stronger σ -donor phosphine PMe₃ increases the pK_a of HW(CO)₃Cp by 10 units.^{1b,13,14}

Kinetic Acidity. When 1 was allowed to react with a 300-fold excess of aniline- d_2 (0.78 M), no deuterium exchange was observed after 72 h at 40 °C or 12 h at 82 °C. We therefore used the stronger base DNBu₂ (the CH₃CN pK_a of Bu₂NH₂⁺ is 18.3^{10c}) to measure the kinetic acidity of 1. In the presence of 0.1 M DNBu₂ in acetonitrile at 82 °C (conditions under which the pK_a values of 1 and Bu₂NH₂⁺ indicate that no net deprotonation occurs), the hydride signal of 1 disappeared with a pseudofirst-order rate constant k_{obsd} of $1.5 \times 10^{-5} \text{ s}^{-1}$. Application of the McKay equation for a species with four equivalent protons $(eq 5)^{6,15}$ gives k_{HD} (defined by eq 6) at 82 °C as 6.0×10^{-4} M⁻¹

$$k_{\rm obsd} = k_{\rm HD} \frac{[\rm DNBu_2]}{4} \tag{5}$$

 $[H_{4-x}D_xReL_4]^+ + DNBu_2 \xrightarrow{k_{HD}} H_{3-x}D_xReL_4 + [HDNBu_2]^+$

 s^{-1} . (We assume that k_{HD} is the rate constant for the removal of any H⁺ by any molecule of dibutylamine and is independent of the isotopic nature of the remaining protons on rhenium (i.e., of the value of x) or on nitrogen and that H/D exchange among nitrogens is sufficiently fast that any H removed is replaced by D.16)

The rate constant for proton transfer to aniline from 1 can be estimated from this measured k_{HD} for transfer to DNBu₂. Extrapolation from 82 to 25 °C with typical proton-transfer activation parameters ($\Delta H^{\dagger} = 17.6 \text{ kcal/mol and } \Delta S^{\dagger} = -26.7 \text{ eu})^{6}$ gives 5×10^{-6} M⁻¹ s⁻¹; the assumption that at least half of the decrease in thermodynamic driving force from $DNBu_2$ to $PhNH_2$ (ΔpK_a between $PhNH_3^+$ and $Bu_2NH_2^+$ is 7.75) will be reflected in the rate constant¹⁷ allows estimation of the aniline second-order rate constant k_{H^+} (defined in eq 1) as <10⁻⁹ M⁻¹ s⁻¹. This estimate

- (12)
- Schwesinger, R. Personal communication. Moore, E. J.; Sullivan, J. M.; Norton, J. R. J. Am. Chem. Soc. 1986, 108, 2257. (13)
- (14) Kristjánsdóttir, S. S.; Moody, A. E.; Weberg, R. T.; Norton, J. R.
- (14) Relistration, S. S., Process, A. E., Roberg, R. L., Strang, R. L., Strang, R. L., Strang, S. C., Organometallics 1988, 7, 1983.
 (15) (a) McKay, H. A. C. J. Am. Chem. Soc. 1943, 65, 702. (b) Harris, G. M. Trans. Faraday Soc. 1951, 47, 716.
 (16) A complete explanation of why these assumptions are both necessary
- and valid has been given in ref 6.
 (17) We are assuming that the change in ΔG^t with ΔG^o as we change nitrogen bases (the Brønsted coefficient α) is at least 0.5—the value found for thermoneutral transfers from M-H to substituted anilines in ref 6. If α is larger (as it could well be for a thermodynamically unfavorable deprotonation such as that of 1^6), $k_{\rm H}$ + is even smaller.

is more than 5 orders of magnitude slower than the rate constant $(3 \times 10^{-4} \text{ M}^{-1} \text{ s}^{-1} \text{ at } 25 \text{ °C})$ predicted by the linear relationship between rate constant and pK_a^{MH} that we have found for aniline deprotonations of uncrowded mononuclear hydrides.^{1b,6}

Little structural rearrangement is needed to deprotonate 1: for steric reasons the structures of the Re(PMe₂Ph)₄ core must be very similar in 1 ($[H_4Re(PMe_2Ph)_4]^+$) and in its conjugate base 4. The slow rate measured for proton transfer from 1 must therefore be due to steric factors—the ability of this Re(PMe₂Ph)₄ core to prevent close approach by aniline to Re from any direction.¹⁸ A similar screening function must be performed by the $Mo(dppe)_2$ core in $[HMo(CO)_2(dppe)_2]^+$ (known to undergo very slow proton transfer to nitrogen bases)¹⁹ and the Cr(tripod)₂ core in $HCr(tripod)_{2}^{+}$ (tripod = $MeC(CH_{2}PMe_{2})_{3}$) (known to undergo slow proton transfer to its conjugate base)20 but not by the Ir- $(PMe_2Ph)_3$ core in 3 (for which fast transfer to Et₃N has been observed qualitatively at -80 °C).9a

Acknowledgment. This research was supported by NSF Grant CHE-8819760.

Registry No. 1, 123674-40-8; TMG, 80-70-6; DBU, 6674-22-2; dibutylamine, 111-92-2; aniline, 62-53-3.

- (18) A weak-interaction model predicts that proton-transfer rate constants will decrease "extremely rapidly with reactant separation": Creutz, C.; Sutin, N. J. Am. Chem. Soc. 1988, 110, 2418.
- (a) Darensbourg, M. Y.; Ludvig, M. M. Inorg. Chem. 1986, 25, 2894. (19)(b) Hanckel, J. M.; Darensbourg, M. Y. J. Am. Chem. Soc. 1983, 105, 6979.
- (20) Thaler, E.; Folting, J. C.; Caulton, K. G. Inorg. Chem. 1987, 26, 374.

Contribution from the Department of Chemistry and Center for Organometallic Research, University of North Texas, Denton, Texas 76203-5068

Octahedral Metal Carbonyls. 78.1 Mechanism of Alkane Displacement by 1-Hexene from (Alkane)W(CO)₅ Complexes (Alkane = Cyclohexane, *n*-Heptane). Estimates of the Alkane-W Bond Strengths in Condensed Media

Gerard R. Dobson,* Khalil J. Asali, Charles D. Cate, and Colin W. Cate

Received April 18, 1991

 $(Solvent)M(CO)_5$ intermediates are produced in predominant concentration in solution after flash photolysis of $M(CO)_6$ complexes (M = Cr, Mo, W; eq 1); the solvation process has been

$$M(CO)_6 \xrightarrow{h\nu} [M(CO)_5] \xrightarrow{k[solv]} (solv)M(CO)_5$$
 (1)

studied intensively.²⁻⁷ Where the solvent (=solv) is an alkane,

- (1) Part 77: Zhang, S.; Wang, I-H.; Wermer, P. H.; Dobson, C. B.; Dobson, G. R. Inorg. Chem., manuscript submitted.
 (a) Welch, J. A.; Peters, K. S.; Vaida, V. J. Phys. Chem. 1982, 68, 1941.
- (b) Simon, J. D.; Peters, K. Chem. Phys. Lett. 1983, 68, 53. (c) Simon, (b) Sillioli, J. D., Felcis, R. Chem. 1985, 90, 6751. (d) Simon, J. D.; Xie,
 X. J. Phys. Chem. 1987, 91, 5538. (e) Wang, L.; Zhu, X.; Spears, K. G. J. Am. Chem. Soc. 1988, 110, 8695. (f) Wang, L.; Zhu, X.; Spears, K. G. J. Phys. Chem. 1989, 2. (g) Simon, J. D.; Xie, X. J. Phys. Chem. 1989, 93, 291. (h) Joly, A. G.; Nelson, K. A. J. Phys. Chem. 1989, 93, 2976. 2876.
- (3) Lee, M.; Harris, C. B. J. Am. Chem. Soc. 1989, 111, 8963.
- (4)
- Xie, X.; Simon, J. D. J. Am. Chem. Soc. 1990, 112, 1130. Yu, S. C.; Xu, X.; Lingle, R., Jr.; Hopkins, J. B. J. Am. Chem. Soc. (5) 1990, 112, 3668.
- Joly, A. G.; Nelson, K. A. Chem. Phys. 1991, 152, 69.
- Langford, C. H.; Moralejo, C.; Sharma, D. K. Inorg. Chim. Acta 1987, 126. L11.

0020-1669/91/1330-4471\$02.50/0 © 1991 American Chemical Society